ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12777
21
1

A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention And Meta-information For Ecg Classification

23 November 2022
Y. Li
Guijin Wang
Zhourui Xia
Wenming Yang
Li Sun
    MedIm
ArXivPDFHTML
Abstract

Auxiliary diagnosis of cardiac electrophysiological status can be obtained through the analysis of 12-lead electrocardiograms (ECGs). This work proposes a dual-scale lead-separated transformer with lead-orthogonal attention and meta-information (DLTM-ECG) as a novel approach to address this challenge. ECG segments of each lead are interpreted as independent patches, and together with the reduced dimension signal, they form a dual-scale representation. As a method to reduce interference from segments with low correlation, two group attention mechanisms perform both lead-internal and cross-lead attention. Our method allows for the addition of previously discarded meta-information, further improving the utilization of clinical information. Experimental results show that our DLTM-ECG yields significantly better classification scores than other transformer-based models,matching or performing better than state-of-the-art (SOTA) deep learning methods on two benchmark datasets. Our work has the potential for similar multichannel bioelectrical signal processing and physiological multimodal tasks.

View on arXiv
Comments on this paper