ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13035
9
7

Can lies be faked? Comparing low-stakes and high-stakes deception video datasets from a Machine Learning perspective

23 November 2022
M. Camara
Adriana Postal
Tomas Henrique Maul
Gustavo Henrique Paetzold
ArXivPDFHTML
Abstract

Despite the great impact of lies in human societies and a meager 54% human accuracy for Deception Detection (DD), Machine Learning systems that perform automated DD are still not viable for proper application in real-life settings due to data scarcity. Few publicly available DD datasets exist and the creation of new datasets is hindered by the conceptual distinction between low-stakes and high-stakes lies. Theoretically, the two kinds of lies are so distinct that a dataset of one kind could not be used for applications for the other kind. Even though it is easier to acquire data on low-stakes deception since it can be simulated (faked) in controlled settings, these lies do not hold the same significance or depth as genuine high-stakes lies, which are much harder to obtain and hold the practical interest of automated DD systems. To investigate whether this distinction holds true from a practical perspective, we design several experiments comparing a high-stakes DD dataset and a low-stakes DD dataset evaluating their results on a Deep Learning classifier working exclusively from video data. In our experiments, a network trained in low-stakes lies had better accuracy classifying high-stakes deception than low-stakes, although using low-stakes lies as an augmentation strategy for the high-stakes dataset decreased its accuracy.

View on arXiv
Comments on this paper