ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13051
24
9

Powderworld: A Platform for Understanding Generalization via Rich Task Distributions

23 November 2022
Kevin Frans
Phillip Isola
    OffRL
ArXivPDFHTML
Abstract

One of the grand challenges of reinforcement learning is the ability to generalize to new tasks. However, general agents require a set of rich, diverse tasks to train on. Designing a `foundation environment' for such tasks is tricky -- the ideal environment would support a range of emergent phenomena, an expressive task space, and fast runtime. To take a step towards addressing this research bottleneck, this work presents Powderworld, a lightweight yet expressive simulation environment running directly on the GPU. Within Powderworld, two motivating challenges distributions are presented, one for world-modelling and one for reinforcement learning. Each contains hand-designed test tasks to examine generalization. Experiments indicate that increasing the environment's complexity improves generalization for world models and certain reinforcement learning agents, yet may inhibit learning in high-variance environments. Powderworld aims to support the study of generalization by providing a source of diverse tasks arising from the same core rules.

View on arXiv
Comments on this paper