In this paper, we propose the first-ever real benchmark thought for
evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering
(NR) frameworks. We design and implement an effective pipeline for scanning
real objects in quantity and effortlessly. Our scan station is built with less
than 500hardwarebudgetandcancollectroughly4000imagesofascannedobjectinjust5minutes.SuchaplatformisusedtobuildScanNeRF,adatasetcharacterizedbyseveraltrain/val/testsplitsaimedatbenchmarkingtheperformanceofmodernNeRFmethodsunderdifferentconditions.Accordingly,weevaluatethreecutting−edgeNeRFvariantsonittohighlighttheirstrengthsandweaknesses.Thedatasetisavailableonourprojectpage,togetherwithanonlinebenchmarktofosterthedevelopmentofbetterandbetterNeRFs.