ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.15456
14
1

Noise-resilient approach for deep tomographic imaging

22 November 2022
Zhen Guo
Zhiguang Liu
Qihang Zhang
George Barbastathis
M. Glinsky
ArXivPDFHTML
Abstract

We propose a noise-resilient deep reconstruction algorithm for X-ray tomography. Our approach shows strong noise resilience without obtaining noisy training examples. The advantages of our framework may further enable low-photon tomographic imaging.

View on arXiv
Comments on this paper