ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.15510
19
0

Localized Shortcut Removal

24 November 2022
Nicolas M. Muller
Jochen Jacobs
Jennifer Williams
Konstantin Böttinger
ArXivPDFHTML
Abstract

Machine learning is a data-driven field, and the quality of the underlying datasets plays a crucial role in learning success. However, high performance on held-out test data does not necessarily indicate that a model generalizes or learns anything meaningful. This is often due to the existence of machine learning shortcuts - features in the data that are predictive but unrelated to the problem at hand. To address this issue for datasets where the shortcuts are smaller and more localized than true features, we propose a novel approach to detect and remove them. We use an adversarially trained lens to detect and eliminate highly predictive but semantically unconnected clues in images. In our experiments on both synthetic and real-world data, we show that our proposed approach reliably identifies and neutralizes such shortcuts without causing degradation of model performance on clean data. We believe that our approach can lead to more meaningful and generalizable machine learning models, especially in scenarios where the quality of the underlying datasets is crucial.

View on arXiv
Comments on this paper