ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.15974
11
24

Neural Speech Phase Prediction based on Parallel Estimation Architecture and Anti-Wrapping Losses

29 November 2022
Yang Ai
Zhenhua Ling
ArXivPDFHTML
Abstract

This paper presents a novel speech phase prediction model which predicts wrapped phase spectra directly from amplitude spectra by neural networks. The proposed model is a cascade of a residual convolutional network and a parallel estimation architecture. The parallel estimation architecture is composed of two parallel linear convolutional layers and a phase calculation formula, imitating the process of calculating the phase spectra from the real and imaginary parts of complex spectra and strictly restricting the predicted phase values to the principal value interval. To avoid the error expansion issue caused by phase wrapping, we design anti-wrapping training losses defined between the predicted wrapped phase spectra and natural ones by activating the instantaneous phase error, group delay error and instantaneous angular frequency error using an anti-wrapping function. Experimental results show that our proposed neural speech phase prediction model outperforms the iterative Griffin-Lim algorithm and other neural network-based method, in terms of both reconstructed speech quality and generation speed.

View on arXiv
Comments on this paper