ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16065
6
7

Hiding speaker's sex in speech using zero-evidence speaker representation in an analysis/synthesis pipeline

29 November 2022
Paul-Gauthier Noé
Xiaoxiao Miao
Xin Wang
Junichi Yamagishi
J. Bonastre
D. Matrouf
ArXivPDFHTML
Abstract

The use of modern vocoders in an analysis/synthesis pipeline allows us to investigate high-quality voice conversion that can be used for privacy purposes. Here, we propose to transform the speaker embedding and the pitch in order to hide the sex of the speaker. ECAPA-TDNN-based speaker representation fed into a HiFiGAN vocoder is protected using a neural-discriminant analysis approach, which is consistent with the zero-evidence concept of privacy. This approach significantly reduces the information in speech related to the speaker's sex while preserving speech content and some consistency in the resulting protected voices.

View on arXiv
Comments on this paper