ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.00394
21
1

From CNNs to Shift-Invariant Twin Models Based on Complex Wavelets

1 December 2022
Hubert Leterme
K. Polisano
V. Perrier
Alahari Karteek
ArXivPDFHTML
Abstract

We propose a novel method to increase shift invariance and prediction accuracy in convolutional neural networks. Specifically, we replace the first-layer combination "real-valued convolutions + max pooling" (RMax) by "complex-valued convolutions + modulus" (CMod), which is stable to translations, or shifts. To justify our approach, we claim that CMod and RMax produce comparable outputs when the convolution kernel is band-pass and oriented (Gabor-like filter). In this context, CMod can therefore be considered as a stable alternative to RMax. To enforce this property, we constrain the convolution kernels to adopt such a Gabor-like structure. The corresponding architecture is called mathematical twin, because it employs a well-defined mathematical operator to mimic the behavior of the original, freely-trained model. Our approach achieves superior accuracy on ImageNet and CIFAR-10 classification tasks, compared to prior methods based on low-pass filtering. Arguably, our approach's emphasis on retaining high-frequency details contributes to a better balance between shift invariance and information preservation, resulting in improved performance. Furthermore, it has a lower computational cost and memory footprint than concurrent work, making it a promising solution for practical implementation.

View on arXiv
Comments on this paper