ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04979
6
45

VideoCoCa: Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners

9 December 2022
Shen Yan
Tao Zhu
Zirui Wang
Yuan Cao
Mi Zhang
Soham Ghosh
Yonghui Wu
Jiahui Yu
    VLM
    VGen
ArXivPDFHTML
Abstract

We explore an efficient approach to establish a foundational video-text model. We present VideoCoCa that maximally reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules, we find that the generative attentional pooling and contrastive attentional pooling layers in CoCa are instantly adaptable to flattened frame embeddings, yielding state-of-the-art results on zero-shot video classification and zero-shot text-to-video retrieval. Furthermore, we explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering and video captioning.

View on arXiv
Comments on this paper