Revisiting the acceleration phenomenon via high-resolution differential equations

Nesterov's accelerated gradient descent (NAG) is one of the milestones in the history of first-order algorithms. It was not successfully uncovered until the high-resolution differential equation framework was proposed in [Shi et al., 2022] that the mechanism behind the acceleration phenomenon is due to the gradient correction term. To deepen our understanding of the high-resolution differential equation framework on the convergence rate, we continue to investigate NAG for the -strongly convex function based on the techniques of Lyapunov analysis and phase-space representation in this paper. First, we revisit the proof from the gradient-correction scheme. Similar to [Chen et al., 2022], the straightforward calculation simplifies the proof extremely and enlarges the step size to with minor modification. Meanwhile, the way of constructing Lyapunov functions is principled. Furthermore, we also investigate NAG from the implicit-velocity scheme. Due to the difference in the velocity iterates, we find that the Lyapunov function is constructed from the implicit-velocity scheme without the additional term and the calculation of iterative difference becomes simpler. Together with the optimal step size obtained, the high-resolution differential equation framework from the implicit-velocity scheme of NAG is perfect and outperforms the gradient-correction scheme.
View on arXiv