ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.06038
11
0

Large Discourse Treebanks from Scalable Distant Supervision

18 October 2022
Patrick Huber
Giuseppe Carenini
ArXivPDFHTML
Abstract

Discourse parsing is an essential upstream task in Natural Language Processing with strong implications for many real-world applications. Despite its widely recognized role, most recent discourse parsers (and consequently downstream tasks) still rely on small-scale human-annotated discourse treebanks, trying to infer general-purpose discourse structures from very limited data in a few narrow domains. To overcome this dire situation and allow discourse parsers to be trained on larger, more diverse and domain-independent datasets, we propose a framework to generate "silver-standard" discourse trees from distant supervision on the auxiliary task of sentiment analysis.

View on arXiv
Comments on this paper