ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.06872
14
9

Comparing the Decision-Making Mechanisms by Transformers and CNNs via Explanation Methods

13 December 2022
Ming-Xiu Jiang
Saeed Khorram
Li Fuxin
    FAtt
ArXivPDFHTML
Abstract

In order to gain insights about the decision-making of different visual recognition backbones, we propose two methodologies, sub-explanation counting and cross-testing, that systematically applies deep explanation algorithms on a dataset-wide basis, and compares the statistics generated from the amount and nature of the explanations. These methodologies reveal the difference among networks in terms of two properties called compositionality and disjunctivism. Transformers and ConvNeXt are found to be more compositional, in the sense that they jointly consider multiple parts of the image in building their decisions, whereas traditional CNNs and distilled transformers are less compositional and more disjunctive, which means that they use multiple diverse but smaller set of parts to achieve a confident prediction. Through further experiments, we pinpointed the choice of normalization to be especially important in the compositionality of a model, in that batch normalization leads to less compositionality while group and layer normalization lead to more. Finally, we also analyze the features shared by different backbones and plot a landscape of different models based on their feature-use similarity.

View on arXiv
Comments on this paper