ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08568
27
25

Biomedical image analysis competitions: The state of current participation practice

16 December 2022
Matthias Eisenmann
Annika Reinke
V. Weru
M. Tizabi
Fabian Isensee
T. Adler
Patrick Godau
V. Cheplygina
Michal Kozubek
Sharib Ali
Anubha Gupta
J. Kybic
A. Noble
Carlos Ortiz de Solórzano
S. Pachade
Caroline Petitjean
D. Sage
Donglai Wei
Elizabeth Wilden
Deepak Alapatt
Vincent Andrearczyk
Ujjwal Baid
Spyridon Bakas
N. Balu
Sophia Bano
V. Bawa
Jorge Bernal
S. Bodenstedt
Alessandro Casella
Jinwook Choi
O. Commowick
M. Daum
A. Depeursinge
R. Dorent
Jan Egger
H. Eichhorn
Sandy Engelhardt
M. Ganz
G. Girard
Lasse Hansen
M. Heinrich
N. Heller
Alessa Hering
Arnaud Huaulmé
Hyunjeong Kim
Bennett Landman
Hongwei Bran Li
Jianning Li
Junfang Ma
Anne L. Martel
Carlos Martín-Isla
Bjoern H. Menze
C. Nwoye
Valentin Oreiller
N. Padoy
Sarthak Pati
K. Payette
Carole Sudre
K. V. Wijnen
Armine Vardazaryan
Tom Kamiel Magda Vercauteren
M. Wagner
Chuanbo Wang
Moi Hoon Yap
Zeyun Yu
Chuner Yuan
M. Zenk
Aneeq Zia
David Zimmerer
Rina Bao
Chanyeol Choi
Andrew Cohen
O. Dzyubachyk
Adrian Galdran
Tianyuan Gan
Tianqi Guo
Pradyumna Gupta
M. Haithami
Edward Ho
Ikbeom Jang
Zhili Li
Zheng Luo
F. Lux
S. Makrogiannis
Dominikus Muller
Young-Tack Oh
Subeen Pang
Constantin Pape
Gorkem Polat
Charlotte R. Reed
Kanghyun Ryu
Tim Scherr
Vajira Thambawita
Haoyu Wang
Xinliang Wang
Kele Xu
H.-I. Yeh
Doyeob Yeo
Yi Yuan
Yan Zeng
Xingwen Zhao
J. Abbing
Jannes Adam
N. Adluru
Niklas Agethen
S. Ahmed
Y. A. Khalil
Mireia Alenyá
E. Alhoniemi
C. An
T. Anwar
T. Arega
Netanell Avisdris
D. Aydogan
Yi-Shi Bai
Maria G. Baldeon Calisto
Berke Doga Basaran
M. Beetz
Cheng Bian
Hao Bian
K. Blansit
Louise Bloch
Robert Bohnsack
Sara Bosticardo
J. Breen
Mikael Brudfors
Raphael Brüngel
Mariano Cabezas
A. Cacciola
Zhiwei Chen
Yucong Chen
Dan Chen
Minjeong Cho
Min-Kook Choi
Chuantao Xie
Dana Cobzas
Julien Cohen-Adad
Jorge Corral Acero
S. Das
Marcela de Oliveira
Hanqiu Deng
Guiming Dong
Lars Doorenbos
Cory Efird
Sergio Escalera
Di Fan
Mehdi Fatan Serj
A. Fenneteau
Lucas Fidon
P. Filipiak
René Finzel
N. Freitas
Christoph M. Friedrich
Mitchell J. Fulton
Finn Gaida
Francesco Galati
C. Galazis
Changna Gan
Zheyao Gao
Sheng Gao
Matej Gazda
Beerend G. A. Gerats
N. Getty
A. Gibicar
Ryan J Gifford
Sajan Gohil
M. Grammatikopoulou
Daniel Grzech
Orhun Güley
Timo Gunnemann
Chun-Hai Guo
Sylvain Guy
Heonjin Ha
Luyi Han
Ilseok Han
Ali Hatamizadeh
Tianhai He
Ji-Wu Heo
Sebastian Hitziger
SeulGi Hong
Seungbum Hong
Rian Huang
Zi-You Huang
Markus Huellebrand
Stephan Huschauer
M. Hussain
Tomoo Inubushi
Ece Isik Polat
Mojtaba Jafaritadi
Seonghun Jeong
Bailiang Jian
Yu Jiang
Zhifan Jiang
Yu Jin
Smriti Joshi
A. Kadkhodamohammadi
R. A. Kamraoui
Inhak Kang
Jun-Su Kang
Davood Karimi
A. Khademi
Muhammad Irfan Khan
Suleiman A. Khan
Rishab Khantwal
Kwang-Ju Kim
Timothy Kline
Satoshi Kondo
Elina Kontio
Adrian Krenzer
Artem Kroviakov
Hugo J. Kuijf
Satyadwyoom Kumar
Francesco La Rosa
Abhishek Lad
Doohee Lee
Minho Lee
Chiara Lena
Hao Li
Ling Li
Xingyu Li
F. Liao
Kuan-Ya Liao
Arlindo L. Oliveira
Chaonan Lin
Shanhai Lin
Akis Linardos
M. Linguraru
Han Liu
Tao Liu
Dian Liu
Yanling Liu
Joao Lourencco-Silva
Jing Lu
Jia Lu
Imanol Luengo
C. Lund
Huan Minh Luu
Yingqi Lv
Yi Lv
U. Macar
Leon Maechler
L. SinaMansour
Kenji Marshall
Moona Mazher
Richard McKinley
Alfonso Medela
Felix Meissen
Mingyuan Meng
Dylan Miller
S. Mirjahanmardi
A. Mishra
Samir Mitha
Hassan Mohy-ud-Din
Tony C. W. Mok
G. Murugesan
E. Karthik
S. Nalawade
J. Nalepa
Mohamed Naser
R. Nateghi
Hammad Naveed
Quang-Minh Nguyen
Cuong Nguyen Quoc
Brennan Nichyporuk
Bruno Oliveira
David Owen
Jimut Bahan Pal
Junwen Pan
W. Pan
Winnie Pang
Bogyu Park
Vivek Pawar
Kamlesh Pawar
Michael Peven
L. Philipp
Tomasz Pieciak
Szymon Plotka
Marcel Plutat
Fattane Pourakpour
Domen Prelovznik
K. Punithakumar
Abdul Qayyum
Sandro Queirós
Arman Rahmim
Salar Razavi
Jintao Ren
Mina Rezaei
Jonathan Adam Rico
ZunHyan Rieu
M. Rink
Johannes Roth
Y. Ruiz-Gonzalez
Numan Saeed
A. Saha
Mostafa Salem
Ricardo Sánchez-Matilla
K. Schilling
Weizhen Shao
Z. Shen
Ruize Shi
Pengcheng Shi
Daniel Sobotka
Théodore Soulier
Bella Specktor-Fadida
Danail Stoyanov
Timothy Sum Hon Mun
Xiao-Fu Sun
Rong Tao
Franz Thaler
Antoine Théberge
Felix Thielke
Helena R. Torres
K. Wahid
Jiacheng Wang
Yifei Wang
W. Wang
X. Wang
Jianhui Wen
Ning Wen
Marek Wodzinski
Yehong Wu
Fangfang Xia
Tianqi Xiang
Cheng Xiaofei
Lizhang Xu
Tingting Xue
Yu‐Xia Yang
Lingxian Yang
Kai Yao
Huifeng Yao
Amirsaeed Yazdani
Michael C. Yip
Hwa-Seong Yoo
F. Yousefirizi
Shu-Fen Yu
Lei Yu
Jonathan Zamora
Ramy A. Zeineldin
Dewen Zeng
Jianpeng Zhang
Bokai Zhang
Jiapeng Zhang
Fangxi Zhang
Huahong Zhang
Zhongchen Zhao
Zixuan Zhao
Jiachen Zhao
Can Zhao
Q. Zheng
Yuheng Zhi
Ziqi Zhou
Baosheng Zou
Klaus Maier-Hein
Paul F. Jäger
A. Kopp-Schneider
Lena Maier-Hein
ArXivPDFHTML
Abstract

The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.

View on arXiv
Comments on this paper