16
11

Learning from Taxonomy: Multi-label Few-Shot Classification for Everyday Sound Recognition

Abstract

Everyday sound recognition aims to infer types of sound events in audio streams. While many works succeeded in training models with high performance in a fully-supervised manner, they are still restricted to the demand of large quantities of labelled data and the range of predefined classes. To overcome these drawbacks, this work firstly curates a new database named FSD-FS for multi-label few-shot audio classification. It then explores how to incorporate audio taxonomy in few-shot learning. Specifically, this work proposes label-dependent prototypical networks (LaD-protonet) to exploit parent-children relationships between labels. Plus, it applies taxonomy-aware label smoothing techniques to boost model performance. Experiments demonstrate that LaD-protonet outperforms original prototypical networks as well as other state-of-the-art methods. Moreover, its performance can be further boosted when combined with taxonomy-aware label smoothing.

View on arXiv
Comments on this paper