ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.09437
43
5
v1v2v3 (latest)

Machine Learning Systems are Bloated and Vulnerable

16 December 2022
Huaifeng Zhang
Fahmi Abdulqadir Ahmed
Dyako Fatih
Akayou Kitessa
Mohannad J. Alhanahnah
Philipp Leitner
Ahmed Ali-Eldin
ArXiv (abs)PDFHTML
Abstract

Today's software is bloated with both code and features that are not used by most users. This bloat is prevalent across the entire software stack, from the operating system, all the way to software backends, frontends, and web-pages. In this paper, we focus on analyzing and quantifying bloat in machine learning containers. We develop MMLB, a framework to analyze bloat in machine learning containers, measuring the amount of bloat that exists on the container and package levels. Our tool quantifies the sources of bloat and integrates with vulnerability analysis tools to evaluate the impact of bloat on container vulnerabilities. Through experimentation with 15 machine learning containers from Tensorflow, Pytorch, and NVIDIA, we show that bloat is a significant issue, accounting for up to 80% of the container size in some cases. Our results demonstrate that bloat significantly increases the container provisioning time by up to 370% and exacerbates vulnerabilities by up to 99%.

View on arXiv
Comments on this paper