ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.09970
9
8

Data Augmentation on Graphs: A Technical Survey

20 December 2022
Jiajun Zhou
Chenxuan Xie
Shengbo Gong
Z. Wen
Xiangyu Zhao
Qi Xuan
Xiaoniu Yang
    AI4TS
ArXivPDFHTML
Abstract

In recent years, graph representation learning has achieved remarkable success while suffering from low-quality data problems. As a mature technology to improve data quality in computer vision, data augmentation has also attracted increasing attention in graph domain. To advance research in this emerging direction, this survey provides a comprehensive review and summary of existing graph data augmentation (GDAug) techniques. Specifically, this survey first provides an overview of various feasible taxonomies and categorizes existing GDAug studies based on multi-scale graph elements. Subsequently, for each type of GDAug technique, this survey formalizes standardized technical definition, discuss the technical details, and provide schematic illustration. The survey also reviews domain-specific graph data augmentation techniques, including those for heterogeneous graphs, temporal graphs, spatio-temporal graphs, and hypergraphs. In addition, this survey provides a summary of available evaluation metrics and design guidelines for graph data augmentation. Lastly, it outlines the applications of GDAug at both the data and model levels, discusses open issues in the field, and looks forward to future directions. The latest advances in GDAug are summarized in GitHub.

View on arXiv
Comments on this paper