349

Zero-shot Triplet Extraction by Template Infilling

International Joint Conference on Natural Language Processing (IJCNLP), 2022
Abstract

Triplet extraction aims to extract entities and their corresponding relations in unstructured text. Most existing methods train an extraction model on high-quality training data, and hence are incapable of extracting relations that were not observed during training. Generalizing the model to unseen relations typically requires fine-tuning on synthetic training data which is often noisy and unreliable. In this paper, we argue that reducing triplet extraction to a template filling task over a pre-trained language model can equip the model with zero-shot learning capabilities and enable it to leverage the implicit knowledge in the language model. Embodying these ideas, we propose a novel framework, ZETT (ZEro-shot Triplet extraction by Template infilling), that is based on end-to-end generative transformers. Our experiments show that without any data augmentation or pipeline systems, ZETT can outperform previous state-of-the-art models with 25% less parameters. We further show that ZETT is more robust in detecting entities and can be incorporated with automatically generated templates for relations.

View on arXiv
Comments on this paper