ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.10777
14
0

Hierarchically branched diffusion models leverage dataset structure for class-conditional generation

21 December 2022
Alex Tseng
Max W. Shen
Tommaso Biancalani
Gabriele Scalia
    DiffM
ArXivPDFHTML
Abstract

Class-labeled datasets, particularly those common in scientific domains, are rife with internal structure, yet current class-conditional diffusion models ignore these relationships and implicitly diffuse on all classes in a flat fashion. To leverage this structure, we propose hierarchically branched diffusion models as a novel framework for class-conditional generation. Branched diffusion models rely on the same diffusion process as traditional models, but learn reverse diffusion separately for each branch of a hierarchy. We highlight several advantages of branched diffusion models over the current state-of-the-art methods for class-conditional diffusion, including extension to novel classes in a continual-learning setting, a more sophisticated form of analogy-based conditional generation (i.e. transmutation), and a novel interpretability into the generation process. We extensively evaluate branched diffusion models on several benchmark and large real-world scientific datasets spanning many data modalities.

View on arXiv
Comments on this paper