ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.11344
6
0

Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach

21 December 2022
Zichen Gui
Jungang Luo
    3DH
ArXivPDFHTML
Abstract

Human pose estimation has been widely applied in various industries. While recent decades have witnessed the introduction of many advanced two-dimensional (2D) human pose estimation solutions, three-dimensional (3D) human pose estimation is still an active research field in computer vision. Generally speaking, 3D human pose estimation methods can be divided into two categories: single-stage and two-stage. In this paper, we focused on the 2D-to-3D lifting process in the two-stage methods and proposed a more advanced baseline model for 3D human pose estimation, based on the existing solutions. Our improvements include optimization of machine learning models and multiple parameters, as well as introduction of a weighted loss to the training model. Finally, we used the Human3.6M benchmark to test the final performance and it did produce satisfactory results.

View on arXiv
Comments on this paper