ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.14149
17
0

Macro-block dropout for improved regularization in training end-to-end speech recognition models

29 December 2022
Chanwoo Kim
Sathish Indurti
Jinhwan Park
Wonyong Sung
ArXivPDFHTML
Abstract

This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.

View on arXiv
Comments on this paper