ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.01705
19
2

A Survey on Deep Industrial Transfer Learning in Fault Prognostics

4 January 2023
Benjamin Maschler
    AI4CE
ArXivPDFHTML
Abstract

Due to its probabilistic nature, fault prognostics is a prime example of a use case for deep learning utilizing big data. However, the low availability of such data sets combined with the high effort of fitting, parameterizing and evaluating complex learning algorithms to the heterogenous and dynamic settings typical for industrial applications oftentimes prevents the practical application of this approach. Automatic adaptation to new or dynamically changing fault prognostics scenarios can be achieved using transfer learning or continual learning methods. In this paper, a first survey of such approaches is carried out, aiming at establishing best practices for future research in this field. It is shown that the field is lacking common benchmarks to robustly compare results and facilitate scientific progress. Therefore, the data sets utilized in these publications are surveyed as well in order to identify suitable candidates for such benchmark scenarios.

View on arXiv
Comments on this paper