229
v1v2v3 (latest)

TAC+: Optimizing Error-Bounded Lossy Compression for 3D AMR Simulations

IEEE Transactions on Parallel and Distributed Systems (TPDS), 2023
Abstract

Today's scientific simulations require significant data volume reduction because of the enormous amounts of data produced and the limited I/O bandwidth and storage space. Error-bounded lossy compression has been considered one of the most effective solutions to the above problem. However, little work has been done to improve error-bounded lossy compression for Adaptive Mesh Refinement (AMR) simulation data. Unlike the previous work that only leverages 1D compression, in this work, we propose an approach (TAC) to leverage high-dimensional SZ compression for each refinement level of AMR data. To remove the data redundancy across different levels, we propose several pre-process strategies and adaptively use them based on the data features. We further optimize TAC to TAC+ by improving the lossless encoding stage of SZ compression to handle many small AMR data blocks after the pre-processing efficiently. Experiments on 10 AMR datasets from three real-world large-scale AMR simulations demonstrate that TAC+ can improve the compression ratio by up to 4.9×\times under the same data distortion, compared to the state-of-the-art method. In addition, we leverage the flexibility of our approach to tune the error bound for each level, which achieves much lower data distortion on two application-specific metrics.

View on arXiv
Comments on this paper