ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.03407
69
34

On Advantages of Mask-level Recognition for Outlier-aware Segmentation

9 January 2023
Matej Grcić
Josip vSarić
Sinivsa vSegvić
    UQCV
ArXivPDFHTML
Abstract

Most dense recognition approaches bring a separate decision in each particular pixel. These approaches deliver competitive performance in usual closed-set setups. However, important applications in the wild typically require strong performance in presence of outliers. We show that this demanding setup greatly benefit from mask-level predictions, even in the case of non-finetuned baseline models. Moreover, we propose an alternative formulation of dense recognition uncertainty that effectively reduces false positive responses at semantic borders. The proposed formulation produces a further improvement over a very strong baseline and sets the new state of the art in outlier-aware semantic segmentation with and without training on negative data. Our contributions also lead to performance improvement in a recent panoptic setup. In-depth experiments confirm that our approach succeeds due to implicit aggregation of pixel-level cues into mask-level predictions.

View on arXiv
Comments on this paper