ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.04388
17
12

Perceive and predict: self-supervised speech representation based loss functions for speech enhancement

11 January 2023
George Close
William Ravenscroft
Thomas Hain
Stefan Goetze
    SSL
ArXivPDFHTML
Abstract

Recent work in the domain of speech enhancement has explored the use of self-supervised speech representations to aid in the training of neural speech enhancement models. However, much of this work focuses on using the deepest or final outputs of self supervised speech representation models, rather than the earlier feature encodings. The use of self supervised representations in such a way is often not fully motivated. In this work it is shown that the distance between the feature encodings of clean and noisy speech correlate strongly with psychoacoustically motivated measures of speech quality and intelligibility, as well as with human Mean Opinion Score (MOS) ratings. Experiments using this distance as a loss function are performed and improved performance over the use of STFT spectrogram distance based loss as well as other common loss functions from speech enhancement literature is demonstrated using objective measures such as perceptual evaluation of speech quality (PESQ) and short-time objective intelligibility (STOI).

View on arXiv
Comments on this paper