ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.05341
54
3
v1v2v3 (latest)

On a Computable Skorokhod's Integral Based Estimator of the Drift Parameter in Fractional SDE

13 January 2023
Nicolas Marie
ArXiv (abs)PDFHTML
Abstract

This paper deals with a Skorokhod's integral based least squares type estimator θ^N\widehat\theta_NθN​ of the drift parameter θ0\theta_0θ0​ computed from N∈N∗N\in\mathbb N^*N∈N∗ copies X1,…,XNX^1,\dots,X^NX1,…,XN of the solution XXX to dXt=θ0b(Xt)dt+σdBtdX_t =\theta_0b(X_t)dt +\sigma dB_tdXt​=θ0​b(Xt​)dt+σdBt​, where BBB is a fractional Brownian motion of Hurst index H∈[1/2,1)H\in [1/2,1)H∈[1/2,1). On the one hand, a risk bound is established on θ^N\widehat\theta_NθN​ when H=1/2H = 1/2H=1/2 and X1,…,XNX^1,\dots,X^NX1,…,XN are dependent copies of XXX. On the other hand, when H>1/2H > 1/2H>1/2, Skorokhod's integral based estimators as θ^N\widehat\theta_NθN​ cannot be computed directly from data, but in this paper some convergence results are established on a computable approximation of θ^N\widehat\theta_NθN​ when X1,…,XNX^1,\dots,X^NX1,…,XN are independent.

View on arXiv
Comments on this paper