ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.06870
19
1

Learning to solve arithmetic problems with a virtual abacus

17 January 2023
Flavio Petruzzellis
Ling-Hao Chen
Alberto Testolin
ArXivPDFHTML
Abstract

Acquiring mathematical skills is considered a key challenge for modern Artificial Intelligence systems. Inspired by the way humans discover numerical knowledge, here we introduce a deep reinforcement learning framework that allows to simulate how cognitive agents could gradually learn to solve arithmetic problems by interacting with a virtual abacus. The proposed model successfully learn to perform multi-digit additions and subtractions, achieving an error rate below 1% even when operands are much longer than those observed during training. We also compare the performance of learning agents receiving a different amount of explicit supervision, and we analyze the most common error patterns to better understand the limitations and biases resulting from our design choices.

View on arXiv
Comments on this paper