ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07074
18
1

SegViz: A federated-learning based framework for multi-organ segmentation on heterogeneous data sets with partial annotations

17 January 2023
Adway U. Kanhere
Pranav Kulkarni
P. Yi
V. Parekh
    FedML
ArXivPDFHTML
Abstract

Segmentation is one of the most primary tasks in deep learning for medical imaging, owing to its multiple downstream clinical applications. However, generating manual annotations for medical images is time-consuming, requires high skill, and is an expensive effort, especially for 3D images. One potential solution is to aggregate knowledge from partially annotated datasets from multiple groups to collaboratively train global models using Federated Learning. To this end, we propose SegViz, a federated learning-based framework to train a segmentation model from distributed non-i.i.d datasets with partial annotations. The performance of SegViz was compared against training individual models separately on each dataset as well as centrally aggregating all the datasets in one place and training a single model. The SegViz framework using FedBN as the aggregation strategy demonstrated excellent performance on the external BTCV set with dice scores of 0.93, 0.83, 0.55, and 0.75 for segmentation of liver, spleen, pancreas, and kidneys, respectively, significantly (p<0.05p<0.05p<0.05) better (except spleen) than the dice scores of 0.87, 0.83, 0.42, and 0.48 for the baseline models. In contrast, the central aggregation model significantly (p<0.05p<0.05p<0.05) performed poorly on the test dataset with dice scores of 0.65, 0, 0.55, and 0.68. Our results demonstrate the potential of the SegViz framework to train multi-task models from distributed datasets with partial labels. All our implementations are open-source and available at https://anonymous.4open.science/r/SegViz-B746

View on arXiv
Comments on this paper