233

Tailor: Altering Skip Connections for Resource-Efficient Inference

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2023
Abstract

Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly in hardware, requiring extra buffers and increasing on- and off-chip memory utilization and bandwidth requirements. In this paper, we show that skip connections can be optimized for hardware when tackled with a hardware-software codesign approach. We argue that while a network's skip connections are needed for the network to learn, they can later be removed or shortened to provide a more hardware efficient implementation with minimal to no accuracy loss. We introduce Tailor, a codesign tool whose hardware-aware training algorithm gradually removes or shortens a fully trained network's skip connections to lower their hardware cost. The optimized hardware designs improve resource utilization by up to 34% for BRAMs, 13% for FFs, and 16% for LUTs.

View on arXiv
Comments on this paper