ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07896
13
7

Supercharging Distributed Computing Environments For High Performance Data Engineering

19 January 2023
Niranda Perera
Kaiying Shan
Supun Kamburugamuve
Thejaka Amíla Kanewela
Chathura Widanage
A. Sarker
Mills Staylor
Tianle Zhong
V. Abeykoon
Geoffrey C. Fox
    AI4CE
ArXivPDFHTML
Abstract

The data engineering and data science community has embraced the idea of using Python & R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these applications are now essential in order to process terabytes of data. They can easily exceed the capabilities of a single machine, but also demand significant developer time & effort. Therefore it is essential to design scalable dataframe solutions. There have been multiple attempts to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask/Ray distributed computing features look very promising, we perceive that the Dask Dataframes/Ray Datasets still have room for optimization. In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask/Ray infrastructure (thereby supercharging them!). To achieve this, we integrate a high performance dataframe system Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30x more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to the native C++ execution of Cylon. We believe the success of Cylon & CylonFlow extends beyond the data engineering domain, and can be used to consolidate high performance computing and distributed computing ecosystems.

View on arXiv
Comments on this paper