ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.09627
36
3
v1v2v3 (latest)

The Impossibility of Parallelizing Boosting

23 January 2023
Amin Karbasi
Kasper Green Larsen
ArXiv (abs)PDFHTML
Abstract

The aim of boosting is to convert a sequence of weak learners into a strong learner. At their heart, these methods are fully sequential. In this paper, we investigate the possibility of parallelizing boosting. Our main contribution is a strong negative result, implying that significant parallelization of boosting requires an exponential blow-up in the total computing resources needed for training.

View on arXiv
Comments on this paper