ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11015
18
0

Explore the Power of Dropout on Few-shot Learning

26 January 2023
Shaobo Lin
Xingyu Zeng
Rui Zhao
ArXivPDFHTML
Abstract

The generalization power of the pre-trained model is the key for few-shot deep learning. Dropout is a regularization technique used in traditional deep learning methods. In this paper, we explore the power of dropout on few-shot learning and provide some insights about how to use it. Extensive experiments on the few-shot object detection and few-shot image classification datasets, i.e., Pascal VOC, MS COCO, CUB, and mini-ImageNet, validate the effectiveness of our method.

View on arXiv
Comments on this paper