ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11174
22
4

Semi-Supervised Image Captioning by Adversarially Propagating Labeled Data

26 January 2023
Dong-Jin Kim
Tae-Hyun Oh
Jinsoo Choi
In So Kweon
    SSL
    VLM
ArXivPDFHTML
Abstract

We present a novel data-efficient semi-supervised framework to improve the generalization of image captioning models. Constructing a large-scale labeled image captioning dataset is an expensive task in terms of labor, time, and cost. In contrast to manually annotating all the training samples, separately collecting uni-modal datasets is immensely easier, e.g., a large-scale image dataset and a sentence dataset. We leverage such massive unpaired image and caption data upon standard paired data by learning to associate them. To this end, our proposed semi-supervised learning method assigns pseudo-labels to unpaired samples in an adversarial learning fashion, where the joint distribution of image and caption is learned. Our method trains a captioner to learn from a paired data and to progressively associate unpaired data. This approach shows noticeable performance improvement even in challenging scenarios including out-of-task data (i.e., relational captioning, where the target task is different from the unpaired data) and web-crawled data. We also show that our proposed method is theoretically well-motivated and has a favorable global optimal property. Our extensive and comprehensive empirical results both on (1) image-based and (2) dense region-based captioning datasets followed by comprehensive analysis on the scarcely-paired COCO dataset demonstrate the consistent effectiveness of our semisupervised learning method with unpaired data compared to competing methods.

View on arXiv
Comments on this paper