ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11675
22
1

fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling

27 January 2023
Dominic Owens
Haeran Cho
M. Barigozzi
ArXivPDFHTML
Abstract

The package fnets for the R language implements the suite of methodologies proposed by Barigozzi et al. (2022) for the network estimation and forecasting of high-dimensional time series under a factor-adjusted vector autoregressive model, which permits strong spatial and temporal correlations in the data. Additionally, we provide tools for visualising the networks underlying the time series data after adjusting for the presence of factors. The package also offers data-driven methods for selecting tuning parameters including the number of factors, vector autoregressive order and thresholds for estimating the edge sets of the networks of interest in time series analysis. We demonstrate various features of fnets on simulated datasets as well as real data on electricity prices.

View on arXiv
Comments on this paper