ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12288
23
2

Context-Aware Differential Privacy for Language Modeling

28 January 2023
M. H. Dinh
Ferdinando Fioretto
ArXivPDFHTML
Abstract

The remarkable ability of language models (LMs) has also brought challenges at the interface of AI and security. A critical challenge pertains to how much information these models retain and leak about the training data. This is particularly urgent as the typical development of LMs relies on huge, often highly sensitive data, such as emails and chat logs. To contrast this shortcoming, this paper introduces Context-Aware Differentially Private Language Model (CADP-LM) , a privacy-preserving LM framework that relies on two key insights: First, it utilizes the notion of \emph{context} to define and audit the potentially sensitive information. Second, it adopts the notion of Differential Privacy to protect sensitive information and characterize the privacy leakage. A unique characteristic of CADP-LM is its ability to target the protection of sensitive sentences and contexts only, providing a highly accurate private model. Experiments on a variety of datasets and settings demonstrate these strengths of CADP-LM.

View on arXiv
Comments on this paper