Entropy-driven Fair and Effective Federated Learning

Federated Learning (FL) enables collaborative model training across distributed devices while preserving data privacy. Nonetheless, the heterogeneity of edge devices often leads to inconsistent performance of the globally trained models, resulting in unfair outcomes among users. Existing federated fairness algorithms strive to enhance fairness but often fall short in maintaining the overall performance of the global model, typically measured by the average accuracy across all clients. To address this issue, we propose a novel algorithm that leverages entropy-based aggregation combined with model and gradient alignments to simultaneously optimize fairness and global model performance. Our method employs a bi-level optimization framework, where we derive an analytic solution to the aggregation probability in the inner loop, making the optimization process computationally efficient. Additionally, we introduce an innovative alignment update and an adaptive strategy in the outer loop to further balance global model's performance and fairness. Theoretical analysis indicates that our approach guarantees convergence even in non-convex FL settings and demonstrates significant fairness improvements in generalized regression and strongly convex models. Empirically, our approach surpasses state-of-the-art federated fairness algorithms, ensuring consistent performance among clients while improving the overall performance of the global model.
View on arXiv@article{wang2025_2301.12407, title={ Entropy-driven Fair and Effective Federated Learning }, author={ Lin Wang and Zhichao Wang and Ye Shi and Sai Praneeth Karimireddy and Xiaoying Tang }, journal={arXiv preprint arXiv:2301.12407}, year={ 2025 } }