ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12549
8
12

Unlocking Deterministic Robustness Certification on ImageNet

29 January 2023
Kaiqin Hu
Andy Zou
Zifan Wang
Klas Leino
Matt Fredrikson
    OOD
ArXivPDFHTML
Abstract

Despite the promise of Lipschitz-based methods for provably-robust deep learning with deterministic guarantees, current state-of-the-art results are limited to feed-forward Convolutional Networks (ConvNets) on low-dimensional data, such as CIFAR-10. This paper investigates strategies for expanding certifiably robust training to larger, deeper models. A key challenge in certifying deep networks is efficient calculation of the Lipschitz bound for residual blocks found in ResNet and ViT architectures. We show that fast ways of bounding the Lipschitz constant for conventional ResNets are loose, and show how to address this by designing a new residual block, leading to the \emph{Linear ResNet} (LiResNet) architecture. We then introduce \emph{Efficient Margin MAximization} (EMMA), a loss function that stabilizes robust training by simultaneously penalizing worst-case adversarial examples from \emph{all} classes. Together, these contributions yield new \emph{state-of-the-art} robust accuracy on CIFAR-10/100 and Tiny-ImageNet under ℓ2\ell_2ℓ2​ perturbations. Moreover, for the first time, we are able to scale up fast deterministic robustness guarantees to ImageNet, demonstrating that this approach to robust learning can be applied to real-world applications. We release our code on Github: \url{https://github.com/klasleino/gloro}.

View on arXiv
Comments on this paper