ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12559
13
5

Imbalanced Mixed Linear Regression

29 January 2023
Pini Zilber
B. Nadler
ArXivPDFHTML
Abstract

We consider the problem of mixed linear regression (MLR), where each observed sample belongs to one of KKK unknown linear models. In practical applications, the proportions of the KKK components are often imbalanced. Unfortunately, most MLR methods do not perform well in such settings. Motivated by this practical challenge, in this work we propose Mix-IRLS, a novel, simple and fast algorithm for MLR with excellent performance on both balanced and imbalanced mixtures. In contrast to popular approaches that recover the KKK models simultaneously, Mix-IRLS does it sequentially using tools from robust regression. Empirically, Mix-IRLS succeeds in a broad range of settings where other methods fail. These include imbalanced mixtures, small sample sizes, presence of outliers, and an unknown number of models KKK. In addition, Mix-IRLS outperforms competing methods on several real-world datasets, in some cases by a large margin. We complement our empirical results by deriving a recovery guarantee for Mix-IRLS, which highlights its advantage on imbalanced mixtures.

View on arXiv
Comments on this paper