ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12671
16
1

Optimal Decision Trees For Interpretable Clustering with Constraints (Extended Version)

30 January 2023
Pouya Shati
Eldan Cohen
Sheila A. McIlraith
ArXivPDFHTML
Abstract

Constrained clustering is a semi-supervised task that employs a limited amount of labelled data, formulated as constraints, to incorporate domain-specific knowledge and to significantly improve clustering accuracy. Previous work has considered exact optimization formulations that can guarantee optimal clustering while satisfying all constraints, however these approaches lack interpretability. Recently, decision-trees have been used to produce inherently interpretable clustering solutions, however existing approaches do not support clustering constraints and do not provide strong theoretical guarantees on solution quality. In this work, we present a novel SAT-based framework for interpretable clustering that supports clustering constraints and that also provides strong theoretical guarantees on solution quality. We also present new insight into the trade-off between interpretability and satisfaction of such user-provided constraints. Our framework is the first approach for interpretable and constrained clustering. Experiments with a range of real-world and synthetic datasets demonstrate that our approach can produce high-quality and interpretable constrained clustering solutions.

View on arXiv
Comments on this paper