As Non-Fungible Tokens (NFTs) continue to grow in popularity, NFT users have
become targets of phishing attacks by cybercriminals, called \textit{NFT
drainers}. Over the last year, \100millionworthofNFTswerestolenbydrainers,andtheirpresenceremainsaseriousthreattotheNFTtradingspace.However,noworkhasyetcomprehensivelyinvestigatedthebehaviorsofdrainersintheNFTecosystem.Inthispaper,wepresentthefirststudyonthetradingbehaviorofNFTdrainersandintroducethefirstdedicatedNFTdrainerdetectionsystem.Wecollect127MNFTtransactiondatafromtheEthereumblockchainand1,135draineraccountsfromfivesourcesfortheyear2022.Wefindthatdrainersexhibitsignificantlydifferenttransactionalandsocialcontextsfromthoseofregularusers.Withtheseinsights,wedesignDRAINCLoG,anautomaticdrainerdetectionsystemutilizingGraphNeuralNetworks.ThissystemeffectivelycapturesthemultifacetedwebofinteractionswithintheNFTspacethroughtwodistinctgraphs:theNFT−UsergraphfortransactioncontextsandtheUsergraphforsocialcontexts.Evaluationsusingreal−worldNFTtransactiondataunderscoretherobustnessandprecisionofourmodel.Additionally,weanalyzethesecurityofDRAINCLoGunderawidevarietyofevasionattacks.