ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13636
15
7

Transport with Support: Data-Conditional Diffusion Bridges

31 January 2023
Ella Tamir
Martin Trapp
Arno Solin
    DiffM
    OT
ArXivPDFHTML
Abstract

The dynamic Schr\"odinger bridge problem provides an appealing setting for solving constrained time-series data generation tasks posed as optimal transport problems. It consists of learning non-linear diffusion processes using efficient iterative solvers. Recent works have demonstrated state-of-the-art results (eg. in modelling single-cell embryo RNA sequences or sampling from complex posteriors) but are limited to learning bridges with only initial and terminal constraints. Our work extends this paradigm by proposing the Iterative Smoothing Bridge (ISB). We integrate Bayesian filtering and optimal control into learning the diffusion process, enabling the generation of constrained stochastic processes governed by sparse observations at intermediate stages and terminal constraints. We assess the effectiveness of our method on synthetic and real-world data generation tasks and we show that the ISB generalises well to high-dimensional data, is computationally efficient, and provides accurate estimates of the marginals at intermediate and terminal times.

View on arXiv
Comments on this paper