ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01233
8
1

Sparse High-Dimensional Vector Autoregressive Bootstrap

2 February 2023
R. Adámek
Stephan Smeekes
Ines Wilms
ArXivPDFHTML
Abstract

We introduce a high-dimensional multiplier bootstrap for time series data based capturing dependence through a sparsely estimated vector autoregressive model. We prove its consistency for inference on high-dimensional means under two different moment assumptions on the errors, namely sub-gaussian moments and a finite number of absolute moments. In establishing these results, we derive a Gaussian approximation for the maximum mean of a linear process, which may be of independent interest.

View on arXiv
Comments on this paper