ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01308
98
44
v1v2 (latest)

Large language models predict human sensory judgments across six modalities

2 February 2023
Raja Marjieh
Ilia Sucholutsky
Pol van Rijn
Nori Jacoby
Thomas Griffiths
    VLM
ArXiv (abs)PDFHTML
Abstract

Determining the extent to which the perceptual world can be recovered from language is a longstanding problem in philosophy and cognitive science. We show that state-of-the-art large language models can unlock new insights into this problem by providing a lower bound on the amount of perceptual information that can be extracted from language. Specifically, we elicit pairwise similarity judgments from GPT models across six psychophysical datasets. We show that the judgments are significantly correlated with human data across all domains, recovering well-known representations like the color wheel and pitch spiral. Surprisingly, we find that a model (GPT-4) co-trained on vision and language does not necessarily lead to improvements specific to the visual modality. To study the influence of specific languages on perception, we also apply the models to a multilingual color-naming task. We find that GPT-4 replicates cross-linguistic variation in English and Russian illuminating the interaction of language and perception.

View on arXiv
Comments on this paper