ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01703
14
9

DAMS-LIO: A Degeneration-Aware and Modular Sensor-Fusion LiDAR-inertial Odometry

3 February 2023
Fuzhang Han
Han Zheng
Wenjun Huang
R. Xiong
Yue Wang
Yanmei Jiao
ArXivPDFHTML
Abstract

With robots being deployed in increasingly complex environments like underground mines and planetary surfaces, the multi-sensor fusion method has gained more and more attention which is a promising solution to state estimation in the such scene. The fusion scheme is a central component of these methods. In this paper, a light-weight iEKF-based LiDAR-inertial odometry system is presented, which utilizes a degeneration-aware and modular sensor-fusion pipeline that takes both LiDAR points and relative pose from another odometry as the measurement in the update process only when degeneration is detected. Both the Cramer-Rao Lower Bound (CRLB) theory and simulation test are used to demonstrate the higher accuracy of our method compared to methods using a single observation. Furthermore, the proposed system is evaluated in perceptually challenging datasets against various state-of-the-art sensor-fusion methods. The results show that the proposed system achieves real-time and high estimation accuracy performance despite the challenging environment and poor observations.

View on arXiv
Comments on this paper