ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02055
16
0

Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular Property Prediction

4 February 2023
Christopher Fifty
Joseph M. Paggi
Ehsan Amid
J. Leskovec
R. Dror
    AI4CE
ArXivPDFHTML
Abstract

Few-shot learning is a promising approach to molecular property prediction as supervised data is often very limited. However, many important molecular properties depend on complex molecular characteristics -- such as the various 3D geometries a molecule may adopt or the types of chemical interactions it can form -- that are not explicitly encoded in the feature space and must be approximated from low amounts of data. Learning these characteristics can be difficult, especially for few-shot learning algorithms that are designed for fast adaptation to new tasks. In this work, we develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction. Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations, and a multi-task learning paradigm to structure the embedding space. On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance. Our code is available at https://github.com/cfifty/IGNITE.

View on arXiv
Comments on this paper