ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02573
32
44

Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey

6 February 2023
Jiajun Wu
Steve Drew
Fan Dong
Zhuangdi Zhu
Jiayu Zhou
    FedML
ArXivPDFHTML
Abstract

The ultra-low latency requirements of 5G/6G applications and privacy constraints call for distributed machine learning systems to be deployed at the edge. With its simple yet effective approach, federated learning (FL) is a natural solution for massive user-owned devices in edge computing with distributed and private training data. FL methods based on FedAvg typically follow a naive star topology, ignoring the heterogeneity and hierarchy of the volatile edge computing architectures and topologies in reality. Several other network topologies exist and can address the limitations and bottlenecks of the star topology. This motivates us to survey network topology-related FL solutions. In this paper, we conduct a comprehensive survey of the existing FL works focusing on network topologies. After a brief overview of FL and edge computing networks, we discuss various edge network topologies as well as their advantages and disadvantages. Lastly, we discuss the remaining challenges and future works for applying FL to topology-specific edge networks.

View on arXiv
Comments on this paper