ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02904
11
5

Rethinking Gauss-Newton for learning over-parameterized models

6 February 2023
Michael Arbel
Romain Menegaux
Pierre Wolinski
    AI4CE
ArXivPDFHTML
Abstract

This work studies the global convergence and implicit bias of Gauss Newton's (GN) when optimizing over-parameterized one-hidden layer networks in the mean-field regime. We first establish a global convergence result for GN in the continuous-time limit exhibiting a faster convergence rate compared to GD due to improved conditioning. We then perform an empirical study on a synthetic regression task to investigate the implicit bias of GN's method. While GN is consistently faster than GD in finding a global optimum, the learned model generalizes well on test data when starting from random initial weights with a small variance and using a small step size to slow down convergence. Specifically, our study shows that such a setting results in a hidden learning phenomenon, where the dynamics are able to recover features with good generalization properties despite the model having sub-optimal training and test performances due to an under-optimized linear layer. This study exhibits a trade-off between the convergence speed of GN and the generalization ability of the learned solution.

View on arXiv
Comments on this paper