ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04125
22
2

Intrinsic Rewards from Self-Organizing Feature Maps for Exploration in Reinforcement Learning

6 February 2023
Marius Lindegaard
Hjalmar Jacob Vinje
Odin Severinsen
ArXivPDFHTML
Abstract

We introduce an exploration bonus for deep reinforcement learning methods calculated using self-organising feature maps. Our method uses adaptive resonance theory (ART) providing online, unsupervised clustering to quantify the novelty of a state. This heuristic is used to add an intrinsic reward to the extrinsic reward signal for then to optimize the agent to maximize the sum of these two rewards. We find that this method was able to play the game Ordeal at a human level after a comparable number of training epochs to ICM arXiv:1705.05464. Agents augmented with RND arXiv:1810.12894 were unable to achieve the same level of performance in our space of hyperparameters.

View on arXiv
Comments on this paper