ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.06812
14
3

Scalable Optimal Multiway-Split Decision Trees with Constraints

14 February 2023
Shivaram Subramanian
Wei-Ju Sun
ArXivPDFHTML
Abstract

There has been a surge of interest in learning optimal decision trees using mixed-integer programs (MIP) in recent years, as heuristic-based methods do not guarantee optimality and find it challenging to incorporate constraints that are critical for many practical applications. However, existing MIP methods that build on an arc-based formulation do not scale well as the number of binary variables is in the order of O(2dN)\mathcal{O}(2^dN)O(2dN), where ddd and NNN refer to the depth of the tree and the size of the dataset. Moreover, they can only handle sample-level constraints and linear metrics. In this paper, we propose a novel path-based MIP formulation where the number of decision variables is independent of NNN. We present a scalable column generation framework to solve the MIP optimally. Our framework produces a multiway-split tree which is more interpretable than the typical binary-split trees due to its shorter rules. Our method can handle nonlinear metrics such as F1 score and incorporate a broader class of constraints. We demonstrate its efficacy with extensive experiments. We present results on datasets containing up to 1,008,372 samples while existing MIP-based decision tree models do not scale well on data beyond a few thousand points. We report superior or competitive results compared to the state-of-art MIP-based methods with up to a 24X reduction in runtime.

View on arXiv
Comments on this paper