ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.07348
26
0

Cliff-Learning

14 February 2023
T. T. Wang
I. Zablotchi
Nir Shavit
Jonathan S. Rosenfeld
ArXivPDFHTML
Abstract

We study the data-scaling of transfer learning from foundation models in the low-downstream-data regime. We observe an intriguing phenomenon which we call cliff-learning. Cliff-learning refers to regions of data-scaling laws where performance improves at a faster than power law rate (i.e. regions of concavity on a log-log scaling plot). We conduct an in-depth investigation of foundation-model cliff-learning and study toy models of the phenomenon. We observe that the degree of cliff-learning reflects the degree of compatibility between the priors of a learning algorithm and the task being learned.

View on arXiv
Comments on this paper